skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hopkins, William D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2026
  2. Primate evolution has led to a remarkable diversity of behavioral specializations and pronounced brain size variation among species (Barton, 2012; DeCasien and Higham, 2019; Powell et al., 2017). Gene expression provides a promising opportunity for studying the molecular basis of brain evolution, but it has been explored in very few primate species to date (e.g. Khaitovich et al., 2005; Khrameeva et al., 2020; Ma et al., 2022; Somel et al., 2009). To understand the landscape of gene expression evolution across the primate lineage, we generated and analyzed RNA-seq data from four brain regions in an unprecedented eighteen species. Here, we show a remarkable level of variation in gene expression among hominid species, including humans and chimpanzees, despite their relatively recent divergence time from other primates. We found that individual genes display a wide range of expression dynamics across evolutionary time reflective of the diverse selection pressures acting on genes within primate brain tissue. Using our samples that represent a 190-fold difference in primate brain size, we identified genes with variation in expression most correlated with brain size. Our study extensively broadens the phylogenetic context of what is known about the molecular evolution of the brain across primates and identifies novel candidate genes for the study of genetic regulation of brain evolution. 
    more » « less
  3. The nucleus accumbens (NAc) is central to motivation and action, exhibiting one of the highest densities of neuropeptide Y (NPY) in the brain. Within the NAc, NPY plays a role in reward and is involved in emotional behavior and in increasing alcohol and drug addiction and fat intake. Here, we examined NPY innervation and neurons of the NAc in humans and other anthropoid primates in order to determine whether there are differences among these various species that would correspond to behavioral or life history variables. We quantified NPY-immunoreactive axons and neurons in the NAc of 13 primate species, including humans, great apes, and monkeys. Our data show that the human brain is unique among primates in having denser NPY innervation within the NAc, as measured by axon length density to neuron density, even after accounting for brain size. Combined with our previous finding of increased dopaminergic innervation in the same region, our results suggest that the neurochemical profile of the human NAc appears to have rendered our species uniquely susceptible to neurophysiological conditions such as addiction. The increase in NPY specific to the NAc may represent an adaptation that favors fat intake and contributes to an increased vulnerability to eating disorders, obesity, as well as alcohol and drug dependence. Along with our findings for dopamine, these deeply rooted structural attributes of the human brain are likely to have emerged early in the human clade, laying the groundwork for later brain expansion and the development of cognitive and behavioral specializations. 
    more » « less
  4. While low serotonergic activity is often associated with psychological disorders such as depression, anxiety, mood, and personality disorders, variations in serotonin also contribute to normal personality differences. In this study, we investigated the role of blood DNA methylation levels at individual CpG sites of two key serotonergic genes (serotonin receptor gene 1A, HTR1A; serotonin transporter gene, SLC6A4) in predicting the personalities of captive chimpanzees. We found associations between methylation at 9/48 CpG sites with four personality dimensions: Dominance, Reactivity/Dependability, Agreeableness, and Openness. Directionality of effects were CpG location-dependent and confirmed a role of serotonergic methylation in reducing anxiety (Dominance) and aggression-related personality (Reactivity/Undependability) while simultaneously promoting prosocial (Agreeableness) and exploratory personalities (Openness). Although early-life adversity has been shown to impact serotonergic methylation patterns in other species, here, atypical early social rearing experiences only had a modest impact on CpG methylation levels in this chimpanzee sample. The precise environmental factors impacting serotonergic methylation in chimpanzees remain to be identified. Nevertheless, our study suggests a role in shaping natural variation in animal personalities. The results of this study offer a basis for future hypothesis-driven testing in additional populations and species to better understand the impact of ecology and evolution on complex behavioral traits. 
    more » « less
  5. Background Dehydroepiandrosterone-sulfate is the most abundant circulating androgen in humans and other catarrhines. It is involved in several biological functions, such as testosterone production, glucocorticoid antagonist actions, neurogenesis and neuroplasticty. Although the role of dehydroepiandrosterone-sulfate (DHEAS) in cognition remains elusive, the DHEAS/cortisol ratio has been positively associated with a slower cognitive age-decline and improved mood in humans. Whether this relationship is found in nonhuman primates remains unknown. Methods We measured DHEAS and cortisol levels in serum of 107 adult chimpanzees to investigate the relationship between DHEAS levels and age. A subset of 21 chimpanzees was used to test the potential associations between DHEAS, cortisol, and DHEAS/cortisol ratio in cognitive function, taking into account age, sex, and their interactions. We tested for cognitive function using the primate cognitive test battery (PCTB) and principal component analyses to categorize cognition into three components: spatial relationship tasks, tool use and social communication tasks, and auditory-visual sensory perception tasks. Results DHEAS levels, but not the DHEAS/cortisol ratio, declined with age in chimpanzees. Our analyses for spatial relationships tasks revealed a significant, positive correlation with the DHEAS/cortisol ratio. Tool use and social communication had a negative relationship with age. Our data show that the DHEAS/cortisol ratio, but not DHEAS individually, is a promising predictor of spatial cognition in chimpanzees. 
    more » « less
  6. Gojobori, Takashi (Ed.)
    Identifying the molecular underpinnings of the neural specializations that underlie human cognitive and behavioral traits has long been of considerable interest. Much research on human-specific changes in gene expression and epigenetic marks has focused on the prefrontal cortex, a brain structure distinguished by its role in executive functions. The cerebellum shows expansion in great apes and is gaining increasing attention for its role in motor skills and cognitive processing, including language. However, relatively few molecular studies of the cerebellum in a comparative evolutionary context have been conducted. Here, we identify human-specific methylation in the lateral cerebellum relative to the dorsolateral prefrontal cortex, in a comparative study with chimpanzees ( Pan troglodytes ) and rhesus macaques ( Macaca mulatta ). Specifically, we profiled genome-wide methylation levels in the three species for each of the two brain structures and identified human-specific differentially methylated genomic regions unique to each structure. We further identified which differentially methylated regions (DMRs) overlap likely regulatory elements and determined whether associated genes show corresponding species differences in gene expression. We found greater human-specific methylation in the cerebellum than the dorsolateral prefrontal cortex, with differentially methylated regions overlapping genes involved in several conditions or processes relevant to human neurobiology, including synaptic plasticity, lipid metabolism, neuroinflammation and neurodegeneration, and neurodevelopment, including developmental disorders. Moreover, our results show some overlap with those of previous studies focused on the neocortex, indicating that such results may be common to multiple brain structures. These findings further our understanding of the cerebellum in human brain evolution. 
    more » « less
  7. null (Ed.)